hive의 맵조인과 셔플조인의 차이를 확인해 보겠습니다.
다음의 조인 쿼리에서 table_a는 14.7G이고, table_b는 5KB입니다. 이 테이블을 조인할 때 각 조인에 따른 성능을 확인해 보면 셔플 조인일 때는 리듀서 단계가 추가되고 맵 조인에 비하여 2배의 시간이 더 걸리는 것을 확인할 수 있습니다.
# table_a와 table_b를 조인하여 join_test 테이블 생성
# table_a: 14.7 GB
# table_b: 5 KB
CREATE TABLE join_test
AS
select a.deviceid, b.cnty_cd
from db_a.table_a a,
db_b.table_b b
where a.date = '20191020'
and a.code = b.code_cd
;
작업 시간
맵조인 작업 시간은 75.14초, 셔플 조인 작업 시간은 130.73초입니다.
# 맵 조인(Map Join)
----------------------------------------------------------------------------------------------
VERTICES MODE STATUS TOTAL COMPLETED RUNNING PENDING FAILED KILLED
----------------------------------------------------------------------------------------------
Map 1 .......... container SUCCEEDED 31 31 0 0 0 0
Map 2 .......... container SUCCEEDED 1 1 0 0 0 0
----------------------------------------------------------------------------------------------
VERTICES: 02/02 [==========================>>] 100% ELAPSED TIME: 75.14 s
----------------------------------------------------------------------------------------------
# 셔플 조인(Shuffle Join, Merge Join)
----------------------------------------------------------------------------------------------
VERTICES MODE STATUS TOTAL COMPLETED RUNNING PENDING FAILED KILLED
----------------------------------------------------------------------------------------------
Map 1 .......... container SUCCEEDED 33 33 0 0 0 0
Map 3 .......... container SUCCEEDED 1 1 0 0 0 0
Reducer 2 ...... container SUCCEEDED 1009 1009 0 0 0 0
----------------------------------------------------------------------------------------------
VERTICES: 03/03 [==========================>>] 100% ELAPSED TIME: 130.73 s
----------------------------------------------------------------------------------------------
실행 계획 확인
맵 조인
hive (sample_db)> explain CREATE TABLE join_test
> AS
> select a.deviceid, b.cnty_cd
> from db_a.table_a a,
> db_b.table_b b
> where a.date = '20191020'
> and a.code = b.code_cd
> ;
OK
Plan optimized by CBO.
Vertex dependency in root stage
Map 1 <- Map 2 (BROADCAST_EDGE)
Stage-3
Stats-Aggr Operator
Stage-4
Create Table Operator:
name:sample_db.join_test
Stage-2
Dependency Collection{}
Stage-1
Map 1
File Output Operator [FS_10]
table:{"name:":"sample_db.join_test"}
Select Operator [SEL_9] (rows=290865947 width=2073)
Output:["_col0","_col1"]
Map Join Operator [MAPJOIN_15] (rows=290865947 width=2073)
Conds:SEL_2._col1=RS_7.UDFToString(_col0)(Inner),HybridGraceHashJoin:true,Output:["_col0","_col4"]
<-Map 2 [BROADCAST_EDGE]
BROADCAST [RS_7]
PartitionCols:UDFToString(_col0)
Select Operator [SEL_5] (rows=513 width=10)
Output:["_col0","_col1"]
Filter Operator [FIL_14] (rows=513 width=10)
predicate:code_cd is not null
TableScan [TS_3] (rows=513 width=10)
db_b@table_b,b,Tbl:COMPLETE,Col:NONE,Output:["code_cd","cnty_cd"]
<-Select Operator [SEL_2] (rows=264423583 width=2073)
Output:["_col0","_col1"]
Filter Operator [FIL_13] (rows=264423583 width=2073)
predicate:code is not null
TableScan [TS_0] (rows=264423583 width=2073)
db_a@table_a,a,Tbl:COMPLETE,Col:NONE,Output:["deviceid","code"]
Stage-0
Move Operator
Please refer to the previous Stage-1
Time taken: 0.143 seconds, Fetched: 39 row(s)
셔플 조인
hive (sample_db)> explain CREATE TABLE join_test
> AS
> select a.deviceid, b.cnty_cd
> from db_a.table_a a,
> db_b.table_b b
> where a.date = '20191020'
> and a.code = b.code_cd
> ;
OK
Plan optimized by CBO.
Vertex dependency in root stage
Reducer 2 <- Map 1 (SIMPLE_EDGE), Map 3 (SIMPLE_EDGE)
Stage-3
Stats-Aggr Operator
Stage-4
Create Table Operator:
name:sample_db.join_test
Stage-2
Dependency Collection{}
Stage-1
Reducer 2
File Output Operator [FS_10]
table:{"name:":"sample_db.join_test"}
Select Operator [SEL_9] (rows=290865947 width=2073)
Output:["_col0","_col1"]
Merge Join Operator [MERGEJOIN_15] (rows=290865947 width=2073)
Conds:RS_6._col1=RS_7.UDFToString(_col0)(Inner),Output:["_col0","_col4"]
<-Map 1 [SIMPLE_EDGE]
SHUFFLE [RS_6]
PartitionCols:_col1
Select Operator [SEL_2] (rows=264423583 width=2073)
Output:["_col0","_col1"]
Filter Operator [FIL_13] (rows=264423583 width=2073)
predicate:code is not null
TableScan [TS_0] (rows=264423583 width=2073)
db_a@table_a,a,Tbl:COMPLETE,Col:NONE,Output:["deviceid","code"]
<-Map 3 [SIMPLE_EDGE]
SHUFFLE [RS_7]
PartitionCols:UDFToString(_col0)
Select Operator [SEL_5] (rows=513 width=10)
Output:["_col0","_col1"]
Filter Operator [FIL_14] (rows=513 width=10)
predicate:code_cd is not null
TableScan [TS_3] (rows=513 width=10)
db_b@table_b,b,Tbl:COMPLETE,Col:NONE,Output:["code_cd","cnty_cd"]
Stage-0
Move Operator
Please refer to the previous Stage-1
Time taken: 0.146 seconds, Fetched: 42 row(s)
두 쿼리의 실행계획을 확인해 보면 셔플조인은 리듀서 단계가 추가되는 것을 확실하게 알 수 있습니다. 하이브 조인의 빠른 처리를 위해서는 되도록 맵조인을 실행하도록 하는 것이 좋습니다.
맵조인을 위한 설정은 다음과 같습니다.
-- 맵조인 적용을 위한 설정. 기본 10MB로 설정
set hive.auto.convert.join=true;
set hive.auto.convert.join.noconditionaltask.size=10000000;
반응형
'빅데이터 > hive' 카테고리의 다른 글
[hive] Gzip파일 처리 중 Unexpected end of input stream 오류 해결 방법 (0) | 2020.07.17 |
---|---|
[hive] 맵 조인 처리 기준 사이즈 확인 (0) | 2020.06.11 |
[hive] collect_list()와 같은 UDAF 함수의 GC 오류 해결 방법 (0) | 2020.06.01 |
[hive] 하이브 매크로(macro) (0) | 2020.04.22 |
[hive] This command is not allowed on an ACID table default.table_name with a non-ACID transaction manager 오류 해결 방법 (0) | 2020.03.17 |