스파크 데이터프레임에서 칼럼을 추가하거나, 한 칼럼의 값을 다른 값으로 변경 할 때는 withColumn 함수를 이용합니다. val df = spark.read.json("/user/people.json") scala> df.show() +----+-------+ | age| name| +----+-------+ |null|Michael| | 30| Andy| | 19| Justin| +----+-------+ // 새로운 칼럼 추가 scala> df.withColumn("xx", $"name").show() +----+-------+-------+ | age| name| xx| +----+-------+-------+ |null|Michael|Michael| | 30| Andy| Andy| | 19| ..
스파크의 RDD, DataFrame, DataSet의 차이에 대해서 RDD, DataFrame, DataSet RDD Spark 1.0에서 소개 Java, Scala의 객체를 처리 하는 방식으로 처리 가능 transformation 함수들을 제공하고 각 함수의 결과를 RDD로 생성 action 함수가 호출되어야 실제 동작 rdd.filter(.age >21).map(.last).saveAsObjectFile("result.txt") DataFrame Spark 1.3에서 프로젝트 텅스텐의 일부로 소개 데이터를 스키마 형태로 추상화 하여 처리 Catalyst 옵티마이저에 의해 효율적으로 처리 df.filter("age > 21") df.filter(df.col("age").gt(21)) DataSet 스파..
- Total
- Today
- Yesterday
- 하이브
- 파이썬
- emr
- HIVE
- oozie
- bash
- 하둡
- 정올
- SPARK
- mysql
- nodejs
- yarn
- 다이나믹
- build
- HDFS
- hbase
- Hadoop
- 알고리즘
- Tez
- airflow
- AWS
- Python
- 오류
- ubuntu
- SQL
- 백준
- S3
- java
- Linux
- error
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |